E. coli Transcription Repair Coupling Factor (Mfd Protein) Rescues Arrested Complexes by Promoting Forward Translocation

نویسندگان

  • Joo-Seop Park
  • Michael T. Marr
  • Jeffrey W. Roberts
چکیده

Transcription and DNA repair are coupled in E. coli by the Mfd protein, which dissociates transcription elongation complexes blocked at nonpairing lesions and mediates recruitment of DNA repair proteins. We show that Mfd influences the elongation state of RNA polymerase (RNAP); transcription complexes that have reverse translocated into the backtracked position, a potentially important intermediate in RNA proofreading and repair, are restored to the forward position by the activity of Mfd, and arrested complexes are rescued into productive elongation. Mfd may act through a translocase activity that rewinds upstream DNA, leading either to translocation or to release of RNA polymerase when the enzyme active site cannot continue elongation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling the motor activity of a transcription-repair coupling factor: autoinhibition and the role of RNA polymerase

Motor proteins that couple ATP hydrolysis to movement along nucleic acids play a variety of essential roles in DNA metabolism. Often these enzymes function as components of macromolecular complexes, and DNA translocation by the motor protein drives movement of other components of the complex. In order to understand how the activity of motor proteins is regulated within multi-protein complexes w...

متن کامل

RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair

The bacterial Mfd protein is a transcription-repair coupling factor that performs two key functions during transcription-coupled DNA repair. The first is to remove RNA polymerase (RNAP) complexes that have been stalled by a DNA lesion from the site of damage, and the second is to mediate the recruitment of DNA repair proteins. Mfd also displaces transcription complexes that have been stalled by...

متن کامل

Structural Basis for Bacterial Transcription-Coupled DNA Repair

Coupling of transcription and DNA repair in bacteria is mediated by transcription-repair coupling factor (TRCF, the product of the mfd gene), which removes transcription elongation complexes stalled at DNA lesions and recruits the nucleotide excision repair machinery to the site. Here we describe the 3.2 A-resolution X-ray crystal structure of Escherichia coli TRCF. The structure consists of a ...

متن کامل

Direct Restart of a Replication Fork Stalled by a Head-On RNA Polymerase

In vivo studies suggest that replication forks are arrested due to encounters with head-on transcription complexes. Yet, the fate of the replisome and RNA polymerase (RNAP) following a head-on collision is unknown. Here, we find that the E. coli replisome stalls upon collision with a head-on transcription complex, but instead of collapsing, the replication fork remains highly stable and eventua...

متن کامل

Distinct Properties of Hexameric but Functionally Conserved Mycobacterium tuberculosis Transcription-Repair Coupling Factor

Transcription coupled nucleotide excision repair (TC-NER) is involved in correcting UV-induced damage and other road-blocks encountered in the transcribed strand. Mutation frequency decline (Mfd) is a transcription repair coupling factor, involved in repair of template strand during transcription. Mfd from M. tuberculosis (MtbMfd) is 1234 amino-acids long harboring characteristic modules for di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2002